일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- CV
- TTS
- 부스트캠프 AI Tech
- Noise Contrastive Estimation
- Tacotron
- CF
- word2vec
- Dilated convolution
- NEG
- FastSpeech
- SGNS
- Implicit feedback
- BOJ
- Skip-gram
- RecSys
- 논문리뷰
- Item2Vec
- Neural Collaborative Filtering
- Ai
- wavenet
- Recommender System
- Collaborative Filtering
- Tacotron2
- 추천시스템
- 백준
- ANNOY
- FastSpeech2
- ALS
- matrix factorization
- Negative Sampling
- Today
- Total
목록AI/논문 리뷰 (17)
devmoon
ABSTRACT 최근에 발표되었던 Skip-gram 모델은 단어의 문법적, 의미적인 유사도를 잘 표현하는 벡터를 학습하는 효과적인 모델이었다. 이번 논문에서는 벡터 표현력의 품질과 학습 속도를 향상할 수 있는 몇 가지 방법에 대해 소개한다. 그 예로, 자주 등장하는 단어들을 subsampling 하여 큰 속도 향상과 기존보다 균형 잡힌 단어 표현력을 학습시킬 수 있었다고 한다. 또한 기존에 사용하던 Hierarchical softmax를 대체하는 negative sampling에 대해 소개한다. 기존 모델로 얻어낸 벡터의 한계는 구(Phrase)를 잘 해석하지 못한다는 점이었다. 예를 들어, Canada와 Air를 더하였을 때, Air Canada의 정보를 잘 구해내지 못하였다. 따라서 저자는 이런 문제..
ABSTRACT 저자들은 이번 논문에서 단어들을 벡터 공간에 효과적으로 표현하는 2개의 새로운 모델을 소개한다. 각각의 모델들은 단어의 유사도를 기준으로 평가되었으며, 기존에 존재하던 신경망 기반의 모델들과 어떤 성능적 차이가 있는지 보여준다. 결과로 기존의 신경망 모델보다 더 적은 계산량을 가지고 훨씬 좋은 성능을 보임을 증명하였을 뿐만 아니라, 구문론적 그리고 의미론적 관점에서 단어의 유사도를 측정하는 성능이 저자들이 가진 데이터셋에 대해 SOTA에 해당하는 성능을 보였다. INTRODUCTION 많은 NLP의 모델들 그리고 여러 기술들에서 단어를 가장 작은 단위로 다루게 된다. 단어를 기본 단위로 두게 되면 여러 장점들을 가져올 수 있는데 대표적으로 일단 단순하고 강건(Robust)하며 많은 데이터..
ABSTRACT 아이템 추천이라는 작업은 아이템 목록에서 유저의 선호도에 맞추어 좋아할 만한 아이템들을 추천하는 것을 말한다. 저자들은 그런 추천 시스템을 만들기 위해 Implicit Feedback을 사용하였다. 물론 기존에도 Implicit Feedback을 사용하여 아이템 추천을 하는 Matrix Factorization (MF)이나 k-nearest-neighbor (kNN) 모델이 존재했었다. 하지만 이 2가지 모델들은 아이템을 추천할 때, 유저의 선호도에 맞추어 아이템들에 ranking을 매기고자 했는데 학습과정에서 ranking을 직접 최적화하는 부분이 없다는 한계가 있었다. 이에 저자들은 BPR-OPT 라는 새로운 최적화 방법을 소개한다. BPR-OPT는 베이즈 이론에서 등장하는 사후 확률..
이번 논문은 추천 시스템에서 정말 중요한 개념 중 하나인 Matrix Factorization에 대해서 소개하고, 그 성능을 증가시키기 위한 여러 가지 기법에 대해 기술한 논문이다. 개인적으로 추천 시스템의 기초가 되는 논문이라고 생각되어서 선정하게 되었고, 규제화(regularization)부터 시작해서 시간적 요소를 반영하는 것까지 생각한 것들이 흥미롭게 읽은 논문이다. 당시에 진행하던 Netflix Prize 대회는 넷플릭스의 영화를 사용자에게 얼마나 더 잘 추천하는지를 겨루는 대회였다. 해당 대회에서 Matrix Factorization 기법을 사용한 추천의 성능이 이웃기반 추천 시스템보다 우월했다. 따라서 저자는 Matrix Factorization 기법에 다른 테크닉을 추가하여 성능을 더 끌어..
Introduction e-commerce가 점차 발전함에 따라 시장에 등장하는 상품의 종류도 매우 많아졌다. 이에 따라서 사용자들은 올바른 상품을 찾을 수 있도록 해주는 추천 시스템이 필요했는데 일반적으로 사용자나 상품에 대한 프로필을 만들어 서로 연관 짓는 것을 기반으로 하고 있었다. 이런 추천 시스템은 크게 보자면 2종류로 나눌 수 있었는데 하나는 content based approach이고, 다른 하나는 Collaborative Filtering 기반이다. 콘텐츠 기반 추천 시스템은 상품이 가진 특성들을 사용하여 추천을 진행하는 것인데, 유저 프로파일과 아이템(상품) 프로파일을 참고한다. 예를 들어, 어떤 유저가 영화를 즐겨서 본다면 이와 유사한 분위기의 영화를 가진 영화를 유저에게 추천해주는 것..
딥러닝의 레이어를 훨씬 깊게 쌓을 수 있게 영향을 준 이번 논문은 Computer Vision 분야의 대회였던 ILSVRC에서 2위를 차지한 VGGNet에 대한 논문이다. 레이어를 깊게 쌓을수록 파라미터의 수가 많아져 계산량이 늘어나고 시간이 오래 걸린다는 단점이 있었을 텐데, 이를 어떻게 극복했는지 신경 쓰면서 보면 좋은 논문이다. Introduction 2015년 당시 고해상도의 이미지를 입력받아, 사물이나 물체를 인식하여 분류하는 대회인 ILSVRC에서 Convolution연산을 사용하는 딥러닝 모델(ConvNet)을 사용하는 팀들이 우수한 성적들을 많이 보여주고 있었다. 특히 Computer Vision 분야에서는 ConvNet은 마치 흙속의 진주와도 같았고 그렇기에 많은 사람들이 이를 개선하기 ..
AlexNet이라고 흔히 불리는 이번 논문은 2012년 이미지 분류 대회에서 우승을 차지한 모델이다. CNN을 사용한 딥러닝 구조에서 어떻게 많은 120만 장의 사진들을 그 당시 기술로 처리를 하였고, 파라미터 수가 많은데 과적합 문제를 어떻게 해결했는지 알아볼 수 있는 좋은 논문이다. INTRODUCTION 2012년, 객체 인식(Object Recognition)을 하기 위해서는 머신러닝을 사용한 방법들이 거의 필수적으로 다가왔고 그 성능을 끌어올리기 위해서는 많은 양의 데이터셋이나 더 강력한 모델 그리고 오버 피팅을 방지하기 위한 기술들이 필요했다. 따라서 약 100만 개의 데이터를 학습시키기 위한 모델이 필요했었고, 수천 가지의 카테고리로 분류하기 위해서는 가지고 있지 않은 데이터에 대해서도 좋은..
딥러닝을 공부하고 모델링을 진행하다 보면 자주 등장하는 개념이 Batch Normalization이다. 번역해서 배치 정규화라고도 불리는데, 대략적인 개념을 알지만 그 세세한 작동원리와 그 구조를 자세하게 알고 싶어서 리뷰할 논문으로 선택하였다. 배치 정규화를 사용했을 때, 14배 빠른 속도로 동일한 성능을 보일 수 있다니 대단한 개념이라고 생각되었다. 배치 정규화를 가장 처음에 요약하고 시작하자면, 딥러닝 구조의 각 레이어에서 입력들의 분포가 항상 유사하거나 일정하도록 만들어주는 것이다. 입력 분포가 일정하지 않으면 무엇이 문제이고 어떤 단점들이 있는지 논문에서 잘 설명해주어서 그 중요성을 많이 깨닫게 되었다. Introduction 처음에 논문은 SGD의 장점들에 대해서 설명한다. SGD는 딥러닝 모..