일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- CF
- Dilated convolution
- 백준
- NEG
- Ai
- Negative Sampling
- word2vec
- ALS
- Item2Vec
- Noise Contrastive Estimation
- Skip-gram
- FastSpeech2
- BOJ
- wavenet
- Implicit feedback
- FastSpeech
- CV
- SGNS
- Neural Collaborative Filtering
- TTS
- matrix factorization
- RecSys
- Collaborative Filtering
- 부스트캠프 AI Tech
- 논문리뷰
- Tacotron2
- ANNOY
- Tacotron
- 추천시스템
- Recommender System
- Today
- Total
목록추천시스템 (5)
devmoon
https://ieeexplore.ieee.org/document/5694074 Factorization Machines In this paper, we introduce Factorization Machines (FM) which are a new model class that combines the advantages of Support Vector Machines (SVM) with factorization models. Like SVMs, FMs are a general predictor working with any real valued feature vector. ieeexplore.ieee.org 이번에 살펴볼 논문은 sparse한 데이터를 사용해서도 평점 예측을 효과적으로 하고, 선형 시간..
연관 규칙 분석 이전 글에서 보았던 가장 기본적인 인기도 기반의 추천 시스템과는 달리 아이템 간의 연관성을 파악하여 추천을 진행하는 것을 연관 규칙 분석이라고 한다. 다른 말로는 장바구니 분석 또는 서열 분석이라고도 하는데, 장바구니 분석이라고 말하는 것은 마트에 장을 보러 가는 것을 떠올려 보면 된다. 장바구니 안에 여러 개의 상품들이 담겨있는데, 이 상품들 간의 연관성을 찾아내고자 하는 것이다. 같이 구매되는 상품은 무엇인지 아니면 꼭 같이 등장하는 상품이 있지는 않은지 파악하는 것이다. 마트에서 구매한 장바구니 목록을 계속 예시를 들어 설명하자면, 5명의 사람이 구매한 아이템 목록이 아래와 같다고 생각해보자. 여기서 각 사용자가 구매한 아이템 목록 즉, 거래내역을 Transaction 이라고 부르게..
추천 시스템을 만든다고 했을 때 바로 떠오르는 아이디어 중 하나는 분명 "가장 인기 있는 아이템을 사용자에게 추천한다" 일 것이다. 통계적으로 많은 사람들이 좋아했고 구매했기 때문에 잠재적으로 다른 사용자도 해당 아이템을 선호할 가능성이 높기 때문이다. 이번 글에서는 이런 인기도 기반 추천 시스템에 대해서 알아보고자 한다 인기도 기반의 추천시스템은 현업에서 주로 데이터가 부족하거나, 또는 서비스를 시작한 지 얼마 되지 않았을 때 사용한다. 데이터를 부족하기 때문에 추천 모델을 구축하는데 어려움이 있고, 서비스를 시작하지 않은 것도 마찬가지로 데이터가 부족한 현상으로 이어지게 된다. 인기도 기반 추천을 하기 위해서는 각 아이템들을 특정 점수를 기준으로 정렬할 필요가 있다. 인기도의 기준을 어떻게 정할지 경..
추천 시스템 모델을 만들었다면 실제로 적용했을 때 얼마나 좋게 작용하는지 평가할 수 있어야 한다. 간단하게 회사의 비즈니스 입장에서는 새로운 추천 모델을 통해 매출이 얼마나 증가했고, 조회가 얼마나 증가했는지 확인해볼 수 있다. 또한 추천 시스템에서 중요한 평가지표인 CTR(Click Through Rate, 클릭률)을 통해 노출대비 클릭이 얼마나 많이 이루어졌는지 알아볼 수 있다. 반대로 비즈니스 관점이 아닌 사용자에게 얼마나 품질 좋은 추천이 이루어졌는지 생각해볼 수 도 있다. 사용자가 느낄만한 관점은 아래와 같이 크게 4가지로 분류하여 평가한다. 연관성 : 추천된 상품이 유저와 관련된 상품인가? 다양성 : 추천된 K 개의 상품에 다양한 상품이 포함되어 있는가? 하나의 카테고리 상품만 추천되고 있지는..
최근 인터넷이 점차 보급되는 것을 뛰어넘어 거의 모든 사용자들이 인터넷 서비스를 사용하고 상품들을 소비한다. 어떤 물건을 구매하기 위해서 직접 가서 상품을 구매하기보다 택배 배송을 서비스해주는 회사인 쿠팡 또는 SSG몰 네이버 쇼핑들을 사용하게 되며 음식을 먹게 될 때도 배민이나 요기요 같은 배달 서비스를 사용한다. 어떤 것을 구매하지 않고 소비할 수 있는 유튜브의 영상 콘텐츠와 웹툰의 만화들도 마찬가지이다. 위의 모든 IT 서비스들의 공통점은 소비할 수 있는 아이템이 매우 많다는 것이고 이에 따라 각 사용자들은 원하는 상품을 찾기 위한 더 효율적인 방법들이 필요해졌다. 먼저 사용자가 상품을 어떤 식으로 찾아 소비하는지에 따라 2가지 방식으로 나누는 것이 가능하다. Pull 방식 (Searching) 유..