일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- Neural Collaborative Filtering
- Tacotron
- RecSys
- Recommender System
- ALS
- Ai
- 부스트캠프 AI Tech
- ANNOY
- CV
- TTS
- FastSpeech2
- 추천시스템
- NEG
- 논문리뷰
- CF
- Noise Contrastive Estimation
- Tacotron2
- SGNS
- Dilated convolution
- wavenet
- 백준
- Collaborative Filtering
- word2vec
- Negative Sampling
- BOJ
- matrix factorization
- Skip-gram
- Item2Vec
- FastSpeech
- Implicit feedback
- Today
- Total
목록matrix factorization (2)
devmoon
ABSTRACT 2017년도 당시 딥러닝은 음성인식, 컴퓨터 비전, 자연어 처리 분야에서 뛰어난 성능을 보여주며 인기를 끌고 있었다. 하지만 추천시스템 분야에 대해서는 딥러닝이 많이 적용되거나 연구가 활발하게 이루어지지 않았다. 몇 가지 연구들이 추천시스템에 딥러닝을 적용시켜보기는 하였지만, 직접적으로 모델의 핵심 부분이 딥러닝으로 구성된 것이 아니라, 일부분만 딥러닝 연산을 사용하고 있었다. 따라서 딥러닝이 적용된 협업필터링(Collaborative Filtering)이더라도 여전히 두 잠재 벡터의 내적 연산은 필요했다. 저자들은 이번에 내적 연산의 문제점에 대해 소개하며 딥러닝 구조를 사용하여 내적 연산을 대체하도록 만들고자 했고 여러가지 실험을 통해 딥러닝을 핵심 부분으로 모델링하는 Neural n..
ABSTRACT 아이템 추천이라는 작업은 아이템 목록에서 유저의 선호도에 맞추어 좋아할 만한 아이템들을 추천하는 것을 말한다. 저자들은 그런 추천 시스템을 만들기 위해 Implicit Feedback을 사용하였다. 물론 기존에도 Implicit Feedback을 사용하여 아이템 추천을 하는 Matrix Factorization (MF)이나 k-nearest-neighbor (kNN) 모델이 존재했었다. 하지만 이 2가지 모델들은 아이템을 추천할 때, 유저의 선호도에 맞추어 아이템들에 ranking을 매기고자 했는데 학습과정에서 ranking을 직접 최적화하는 부분이 없다는 한계가 있었다. 이에 저자들은 BPR-OPT 라는 새로운 최적화 방법을 소개한다. BPR-OPT는 베이즈 이론에서 등장하는 사후 확률..